nLab piecewise flat spacetime

Redirected from "Regge calculus".
Contents

Context

Riemannian geometry

Gravity

Contents

Idea

If one allows pseudo-Riemannian manifolds with conical singularities then it makes sense to ask for spacetimes which are flat (isometric to pieces of Minkowski spacetime) away from strata of positive codimension, with all curvature concentrated in conical singularities on these lower-dimensional strata.

Such piecewise flat spacetimes have been considered as discretized models for smooth (non-singular and non-piecewise flat) spacetimes useful for computation (see Williams-Tuckey 92): A combinatorial functional on piecewise flat spacetimes, depending on the edge lengths of a metric simplicial complex, was introduced in Regge 61 (see also Barrett 87) with the idea that in an appropriate limit it approaches the Einstein-Hilbert action functional on non-singular spacetimes. This has become famous as Regge calculus. That this limit indeed works out has been proven (only) in Cheeger-Mueller-Schrader 84, see Cheeger 16 for review.

A variant of this perspective, but with the conical singularities constrained to be timelike as expected for “physical” singularities, has been initiated in ‘t Hooft 08 and worked out in some detail by van de Meent 11.

In both cases a more speculative motivation for considering piecewise flat spacetimes is the hope that it might help with defining quantum gravity, non-perturbatively (Regge-Williams 00). A direct attempt to define and compute a path integral quantization over piecewise flat spacetimes is known as “causal dynamical triangulation” (see Ambjorn-Jurkiewicz-Loll 00).

Piecewise flat spacetimes appear naturally in 3-dimensional gravity, which provides much of the inspiration and motivation of various approaches.

But piecewise flat spacetimes also appear naturally as the “far-horizon geometry” (“small NN-limit”, see there) of BPS black brane spacetimes in supergravity theories, where considerations such as at M-theory on G₂-manifolds suggest that the conical singularities have to be taken seriously as part of the physical model. These cone brane-singularities are necessarily time-like, as in ‘t Hooft 08, van de Meent 11, but in contrast to the assumption in general Regge calculus. Of course they are of higher dimension (and higher co-dimension) than considered in ‘t Hooft 08, van de Meent 11.

References

Regge calculus

See also

Application to FRW models of cosmology:

  • Ren Tsuda, Takanori Fujiwara, Oscillating 4-Polytopal Universe in Regge Calculus (arXiv:2011.04120)

‘t Hooft-van de Meent

Causal dynamical triangulation

  • J. Ambjorn, R. Loll, Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change, Nucl.Phys. B536 (1998) 407-434 (arXiv:hep-th/9805108)

  • J. Ambjorn, J. Jurkiewicz, R. Loll, Dynamically Triangulating Lorentzian Quantum Gravity, Nucl.Phys. B610 (2001) 347-382 (arXiv:hep-th/0105267)

  • J. Ambjorn, J. Jurkiewicz, R. Loll, A non-perturbative Lorentzian path integral for gravity, Phys.Rev.Lett. 85 (2000) 924-927 (arXiv:hep-th/0002050)

  • R. Loll, Quantum Gravity from Causal Dynamical Triangulations: A Review (arXiv:1905.08669)

  • Jan Ambjorn, Lattice Quantum Gravity: EDT and CDT [arXiv:2209.06555]

Review:

Relation to dark energy:

  • Mingwei Dai, Walter Freeman, Jack Laiho, Marc Schiffer, Judah Unmuth-Yockey: Dynamical Dark Energy from Lattice Quantum Gravity [arXiv:2408.08963]

Last revised on August 20, 2024 at 05:46:18. See the history of this page for a list of all contributions to it.